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Abstract
The influence of a quantizing electric field on the spin polarization is treated
for semiconductor superlattices with a Rashba spin–orbit interaction. For
weakly coupled superlattices, the quantum kinetic equation for the canonically
transformed density matrix is analytically solved. The spin polarization, which
is induced by a magnetic field via the Zeeman splitting, exhibits a sharp
minimum at the cyclotron-Stark tunnelling resonance. This electric-field-
induced resonant tunnelling mixes different spin states and leads to a strong
spin depolarization.

1. Introduction

The emerging field of spintronics [1] has stimulated the study of spin–orbit interactions in low-
dimensional semiconductor heterostructures. In this field, phenomena are under discussion
that allow manipulations of the electronic spin. Many researchers have focused on the
creation of spin-polarized carrier distributions in semiconductors, either optically [2] or by
electrical injection from magnetic materials [3]. In addition, the electrical control of spins is
of special interest, as it has great potential in semiconductor spintronic applications [1, 4, 5].
The spin–orbit interaction allows the generation of polarized spins and spin currents by
applying a constant electric field. This extrinsic [6] and intrinsic [7] spin Hall effect can
be used for spin injection in paramagnetic semiconductors. Most studies in this field are
based on the semiclassical diffusive transport model [8, 9] and the linear response regime.
Despite this exciting progress, there are only a few discussions of nonlinear spin phenomena
under nonequilibrium conditions. In this paper, we fill this gap by theoretically treating the
quantum transport regime at strong electric fields, when Wannier–Stark (WS) localization
occurs and when field-induced resonant tunnelling between localized spin-up and spin-down
states becomes possible. In a two-dimensional Rashba semiconductor superlattice, the large
lattice constant along the superlattice axis gives rise to a large Bloch frequency � and related
high-field effects of nonequilibrium carriers. The Zeeman splitting due to a perpendicular
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magnetic field provides an energy gap between the spin-dependent WS states as well as an
associated magnetization. Due to the field-induced tunnelling between spin-up and spin-down
states, we observe a sharp minimum in the spin polarization at cyclotron-Stark resonances.
This electric-field-controlled spin depolarization is treated within the density-matrix approach
based on the WS representation.

2. The Hamiltonian

Let us consider a tight-binding model for electrons and their spins moving in the x–y plane of
a two-dimensional semiconductor superlattice with the lattice period d along the x axis. The
carriers are subject to a Rashba spin–orbit interaction and a spin splitting due to the Zeeman term
of a constant magnetic field H oriented perpendicular to the plane. In the quasi-momentum
representation, the Hamiltonian has the form

H0 =
∑

k,σ

εσ (k)a†
kσ akσ +

∑

k

∑

σ,σ ′
Jσσ ′(k)a†

kσ akσ ′ − ieE
∑

k,σ

∇κ (a
†
k− κ

2 σ ak+ κ
2 σ )|κ=0, (1)

where the field operator a†
k [ak] creates [annihilates] an electron with quasi-momentum

k = (kx, ky) and spin σ . The tight-binding dispersion relation of the two-dimensional
superlattice is given by

ε1,2(k) = ε(k) ∓ µB H, ε(k) =�

2
[1 − cos(kxd)] + ε(ky), (2)

where � and µB denote the width of the lowest miniband and the Bohr magneton, respectively.
The kinetic energy of electrons moving in the y direction is given by ε(ky) = h̄2k2

y/(2m∗),
with m∗ being the effective mass. In equation (1), E denotes the electric field applied parallel
to the x axis. The Rashba spin–orbit coupling matrix has the usual form

Jσσ ′(k) =
(

0 J (k)

J ∗(k) 0

)
, J (k) = αm∗(ivx (k) + vy(k)), (3)

with α being the Rashba coupling parameter and v j (k) = ∂ε(k)/∂h̄k j . To diagonalize the
Hamiltonian H0, we apply a canonical transformation

a†
k1 = �1(k)c†

1(k) − �∗
2(k)c†

2(k), (4)

a†
k2 = �2(k)c†

1(k) + �∗
1(k)c†

2(k), (5)

and determine the unknown functions �1,2(k), which satisfy the normalization and periodic
boundary conditions

|�1(k)|2 + |�2(k)|2 = 1, �1,2(kx + 2π/d, ky) = �1,2(kx, ky). (6)

Assuming that the functions �1,2(k) solve the nonlinear differential equation

�1�2(ε2(k) − ε1(k)) + J (k)�2
1 − J ∗(k)�2

2 + ieE
(

�1
∂�2

∂kx
− �2

∂�1

∂kx

)
= 0, (7)

the transformed Hamiltonian can be written in the form

H0 =
∑

k,µ

[
Eµ(k)c†

µ(k)cµ(k) + ieE∇κc†
µ

(
k +

κ

2

)
cµ

(
k − κ

2

)∣∣∣∣
κ=0

]
, (8)

with the eigenenergies

E1,2 = ε1|�1,2|2 + ε2|�2,1|2 ± J�1�
∗
2 ± J ∗�∗

1�2 − ieE
(

�1
∂�∗

1

∂kx
+ �2

∂�∗
2

∂kx

)
. (9)
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To proceed, we shall conveniently express equation (7) by the following equivalent set of two
linear differential equations [10, 11]

ieE ∂�1(k)

∂kx
= [ξ(kx, ky) + µB H ]�1(k) − J ∗(k)�2(k), (10)

ieE ∂�2(k)

∂kx
= [ξ(kx, ky) − µB H ]�2(k) − J (k)�1(k), (11)

in which ξ(k) is expressed by the equation

E1,2(k) = ε(k) ± ξ(k). (12)

A suitable scheme that allows a straightforward analytical approximation and a numerical
solution of the boundary value problem in equations (10) and (11) is given in appendix A.

The diagonalization of the Hamiltonian H0 is completed by applying a second
transformation

cµ(k) = 1√
Nx

∑

m

cmµ(ky)e
−imkx d−iχµ(k), (13)

with

χµ(k) = 1

eE
∫ kx

0
dk ′

x [Eµ(k ′
x, ky) − 〈Eµ(k)〉], (14)

and

〈Eµ(k)〉 = d

2π

∫ 2π/d

0
dkx Eµ(kx, ky). (15)

After this two-step procedure, we arrive at a Hamiltonian H0 that becomes diagonal

H0 =
∑

m,µ

∑

ky

εmµ(ky)c
†
mµ(ky)cmµ(ky), (16)

with the exact eigenenergies

εmµ(ky) = 〈Eµ(k)〉 − mh̄�. (17)

Our basic Hamiltonian H0 in equation (16) depends on the electric and magnetic field as well
as on the Rashba spin–orbit coupling. We point out that the WS representation of H0 in
equation (16) is exactly equivalent to the original Hamiltonian in equation (1) expressed in the
quasi-momentum representation. Therefore, the outlined schema allows an exact calculation
of eigenenergies and eigenstates of our model Hamiltonian in equation (1) independent of the
values for the Rashba coupling strength α, the magnetic field H , the electric field E , or the
miniband width �. To calculate the eigenenergies of H0 from equation (17), we introduce
dimensionless parameters

ξ̃ (k) = ξ(k)

h̄�
, ε = µB H

h̄�
, (18)

and determine ξ̃ from equation (A.9) in appendix A by taking into account that within the
reduced zone scheme the energy contribution of the lateral electron motion is restricted by the
inequalities

0 � ξ̃ (ky) � 1/2, with ξ̃ (ky) = d

2π

∫ 2π/d

0
dkx ξ̃ (kx, ky). (19)

Figure 1 shows a numerical example for the energy parameter ξ̃ (ky) as a function of kyd (thick
solid line) together with other branches, which correspond to other eigenenergies according to
equation (17). Coupling between the quantum wells of the superlattice leads to anticrossings at
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Figure 1. ξ̃ (ky) = ξ(ky )/(h̄�) as a function of kyd (thick solid line) for E = 17 kV cm−1,
d = 10 nm, � = 100 meV, α = 10−9 eV cm and H = 1 T. From bottom to top, the thin solid
lines refer to ξ̃ (ky) − 1, −ξ̃ (ky), and −ξ̃ (ky) + 1. The dashed lines are calculated for � = 0.

field strengths, at which resonant tunnelling occurs. This effect is most pronounced for strongly
coupled superlattices (� = 100 meV in figure 1). If the quantum wells of the superlattice
are completely decoupled (� = 0), we obtain the analytical solution ξ̃ (ky) = κ(ky) + n0 and
ξ̃ (ky) = −κ(ky) + n0 with κ(ky) = √

ε2 + λ2(ky) and n0 being any integer (λ(ky) is defined
in appendix A by equation (A.1)). Obviously, this simple solution, which is shown by the
dashed lines in figure 1, is only a poor approximation for tunnelling in superlattices with a
large miniband width. The discrepancy between the exact solution (solid lines) and the simple
approximation (dashed lines) is most pronounced at the anticrossings located at kyd = ±8.5.
For the description of these tunnelling transitions, the improved analytical solution derived
in equation (A.13) (appendix A) is more appropriate. In the interval between the minima
at kyd = −17 and +17, equation (A.13) provides an accurate approximation for the energy
splitting ξ̃ (ky). For weakly coupled superlattices,however, the above simple analytical solution
for � = 0 is extremely useful. An example is shown in figure 2 for � = 10 meV. In this
case, only minor gaps appear at the anticrossings. The simple analytical approximation and
the numerical result almost agree with each other. The main tunnelling resonance appears at
ky = 0, when the Bloch frequency � matches the cyclotron frequency ωc (� = ωc). Other
resonances are of minor importance for weakly coupled superlattices.

3. Quantum kinetic equation

Quantum transport and field-induced carrier and spin redistribution in a nonequilibrium system
are described by the density matrix

f σ ′
σ (k, k′|t) = 〈a†

kσ akσ ′ 〉t , (20)

or its equivalent canonically transformed version

Fµ′
µ (k, k′|t) = 〈c†

µ(k)cµ′(k′)〉t . (21)

Most interesting is the density matrix in the WS representation, which diagonalizes the
Hamiltonian H0. Making use of the replacements k → k + κ/2 and k′→ k − κ/2, we
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Figure 2. ξ̃ (ky) = ξ(ky )/(h̄�) as a function of kyd (thick solid line) for E = 17 kV cm−1,
d = 10 nm, � = 10 meV, α = 10−9 eV cm and H = 10 T. From bottom to top, the thin solid
lines refer to ξ̃ (ky) − 1, −ξ̃ (ky), and −ξ̃ (ky) + 1. The dashed lines are calculated for � = 0.

introduce the functions

Fµ′m′
µm (ky, κy |t) =

〈
c†

mµ

(
ky +

κy

2

)
cm′µ′

(
ky − κy

2

)〉

t

, (22)

and obtain from equations (13) and (21)

Fµ′
µ (k,κ|t) = eiχµ(k+κ/2)−iχµ′ (k−κ/2) 1

Nx

∑

m,m′
ei(m−m′)kx d+iκx (m+m′)/2 Fµ′m′

µm (ky, κy|t). (23)

We treat an infinite periodic superlattice structure, for which κy enters the equations only as a
parameter. Introducing the vector basis for the density matrix

f = f 1
1 + f 2

2 , fz = f 1
1 − f 2

2 , fx = f 1
2 + f 2

1 , fy = i( f 1
2 − f 2

1 ), (24)

(and similar definitions for Fµ′
µ (k|t) and Fµ′m′

µm (ky|t)), we obtain from equations (4), (5)
and (13) the following relationship between fz(k) expressed by the original Hamiltonian H0

in equation (1), and the elements of the density matrix in the WS representation

fz(k) = 1

Nx

∑

m,m′
ei(m−m′)kx d

{(|�1(k)|2 − |�2(k)|2) Fz(m
′ − m, ky)

− 2 Re(�1(k)�2(k)eiχ12(k))Fx(m
′ − m, ky)

+ 2 Im(�1(k)�2(k)eiχ12(k))Fy(m
′ − m, ky)

}
, (25)

with χ12(k) = χ1(k) − χ2(k).
A consistent treatment of high-field effects requires the inclusion of at least one inelastic

scattering mechanism, by which the energy supplied by the electric field can dissipate. Let us
treat scattering on polar-optical phonons, which is expressed by the Hamiltonian

Hel−ph =
∑

k,σ

∑

q,G

gσ (q + G)a†
k+qσ akσ [bq+G + b†

−q−G], (26)

with b†
q and bq denoting phonon creation and annihilation operators, respectively. The

components of the phonon wavevector are restricted to the first Brillouin zone (0 � qx,y �
2π/d). For the reciprocal lattice vector, we have Gx,y = 2πm/d , with m = 0, 1, . . . M and
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M = int(d/a) (a is the lattice constant of the bulk system). In general, the coupling constant
gσ depends on the spin index. Applying the canonical transformation, the Hamiltonian for the
electron–phonon interaction takes the form

Hel−ph =
∑

k,k′

∑

G

∑

µµ′
�µ′µ(k′, k)c†

µ′ (k′)cµ(k)[bk′−k+G + b†
−k′+k−G], (27)

with the renormalized coupling

�µ′µ(k′, k) =
∑

σ

gσ (k′ − k + G)Γσ
µ′µ(k′, k), (28)

and

Γ1
µ′µ(k′, k) =

(
�1(k′)�∗

1(k) −�1(k′)�2(k)

−�∗
2(k

′)�∗
1(k) �∗

2(k
′)�2(k)

)
, (29)

Γ2
µ′µ(k′, k) =

(
�2(k′)�∗

2(k) �2(k′)�1(k)

�∗
1(k

′)�∗
2(k) �∗

1(k
′)�1(k)

)
. (30)

Our final result for Hel−ph is obtained by applying the second transformation according to
equation (13). In this WS representation, the interaction Hamiltonian is given by

Hel−ph =
∑

k,k′

∑

G

∑

µµ′

∑

m,m′
�m′µ′,mµ(k′, k)c†

m′µ′(k ′
y)cmµ(ky)[bk′−k+G + b†

−k′+k−G], (31)

with the matrix elements

�m′µ′,mµ(k′, k) = �µ′µ(k′, k)eim′k′
x d−imkx d+iχµ′ (k′)−iχµ(k). (32)

The quantum kinetic equation for the density matrix is obtained from the Liouville equation.
We restrict the discussion to a nondegenerate electron gas, whose equilibrium statistics is
described by the Boltzmann distribution function. Switching to Laplace space with respect to
the time variable, we obtain our main result{

s − i

h̄
[εmµ(ky) − εm′µ′(ky)]

}
Fµ′m′

µm (ky |s)
=

∑

k′
y

∑

m1,m2

∑

µ1,µ2

Fµ2m2
µ1m1

(k ′
y|s)W m2µ2,m′µ′

m1µ1,mµ (k ′
y, ky |s). (33)

An explicit expression for the scattering rates W is given in appendix B. Let us treat this
coupled set of equations in the vector basis. In the equations for F and Fz strongly oscillating
scattering rates appear with three equal spin indices (e.g., W m21,m′1

m11,m2 etc), which are proportional
to the spin–orbit coupling constant α. Under the condition

√
2m∗kBT α/h̄ < µB H , these

contributions can be neglected, and we obtain a closed set of equations for the density-matrix
components F and Fz . In addition to this approximation, let us focus on the high-field regime,
when �τeff 	 1 is satisfied (τeff is an effective scattering time) so that the diagonal elements
of the density matrix with respect to the layer index m dominate. In this case, the kinetic
equations simplify considerably, and we obtain∑

k′
y

F(0, k ′
y)

∑

m

[W m1,01
m1,01 (k ′

y, ky) + W m2,01
m2,01 (k ′

y, ky)]

+
∑

k′
y

Fz(0, k ′
y)

∑

m

[W m1,01
m1,01 (k ′

y, ky) − W m2,01
m2,01 (k ′

y, ky)] = 0, (34)

∑

k′
y

F(0, k ′
y)

∑

m

[W m2,02
m2,02 (k ′

y, ky) + W m1,02
m1,02 (k ′

y, ky)]

−
∑

k′
y

Fz(0, k ′
y)

∑

m

[W m2,02
m2,02 (k ′

y, ky) − W m1,02
m1,02 (k ′

y, ky)] = 0, (35)
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which is quite similar to the kinetic equation for a double-quantum-well superlattice treated
previously (see equation (39) in [12]). Inserting the explicit expression for the scattering
rates from equation (B.1) into these equations and calculating the t integrals, which result
in δ functions in the steady state (s → 0), we obtain a kinetic equation that can be solved
analytically in the weak coupling limit (�/h̄� 
 1), when the states are mainly localized
in a given well (only m = 0). Details of the derivation are summarized in appendix C. The
analytic solution of the kinetic equations is given by

F(m = 0, ky) = A exp

(
−ε(ky)

kBT

)
cosh

(
ξ(ky) − n0(ky)h̄�

kBT

)
, (36)

Fz(m = 0, ky) = −A exp

(
−ε(ky)

kBT

)
sinh

(
ξ(ky) − n0(ky)h̄�

kBT

)
, (37)

where the constant A is calculated from the normalization of the charge contribution
∑

ky

F(m = 0, ky) = 1. (38)

We conclude that thermal, Boltzmann-like lateral distribution functions F1
1 (m = 0, ky) and

F2
2 (m = 0, ky) solve the kinetic equation under the condition of sequential tunnelling in the

quantum limit at high electric fields.

4. Electric-field dependence of the spin polarization

A constant magnetic field applied perpendicular to the x–y plane results in an energy gap that
separates different spin states. The resulting spin polarization is studied under high electric
fields, when carriers are WS localized in the quantum wells of the superlattice and when
a thermal lateral distribution function is set up in the quantum regime. For electric field
strengths that satisfy the condition n� = mωc (m, n are integers), field-induced resonant
tunnelling strongly mixes the spin states so that the spin polarization collapses. Below and
above these particular electric field strengths, the magnetization recovers and approaches its
value at E = 0. This physical picture is confirmed by our quantum-kinetic approach. In the
limit of weak electron–phonon coupling and quantizing electric fields (�τeff 	 1), we can
neglect the oscillating contribution in the second line of equation (25) and obtain for the spin
polarization

fz =
∑

k

( f 1
1 (k) − f 2

2 (k)) =
∑

ky

Fz(m = 0, ky)
∑

kx

(|�1(k)|2 − |�2(k)|2). (39)

Using this result and equation (37), the electric-field dependence of the spin polarization is
numerically calculated by using the exact results for ξ(ky) and �1,2(k) obtained from the
procedure outlined in appendix A. Note that the solution in equation (37) is only applicable
for weakly coupled superlattices. A numerical example for the electric-field dependence of the
spin polarization is shown in figure 3 for superlattices with � = 2 and 10 meV, respectively. In
the absence of resonant tunnelling (� = 0), the spin polarization is independent of the electric
field and given by the value

fz =
∑

k

fz(k) = tanh

(
µB|H |
kBT

)
, (40)

which agrees with the result for E = 0. The horizontal line in figure 3 displays this
limiting value. With increasing miniband width �, a strong antiresonance develops in the
spin polarization as a result of field-induced resonant tunnelling between different spin states.
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Figure 3. Spin polarization fz as a function of the electric field for � = 2 meV (dashed line) and
� = 10 meV (solid line) with H = 10 T, T = 77 K, d = 10 nm. The cyclotron-Stark resonance
at � = ωc is marked by a thin vertical line.

Figure 4. Spin polarization fz as a function of the electric field for H = 10 T and � = 2 meV.
The thick solid (dashed) lines are calculated with α = 1 (5) ×10−9 eV cm and T = 77 K. The
dash–dotted line refers to a weak Rashba coupling of α = 0.05 × 10−9 eV cm. Parameters for the
thin solid line are T = 300 K and α = 10−9 eV cm.

Figure 3 shows the main antiresonance at � = ωc. In general, we expect sharp minima
in the spin polarization also for other cyclotron Stark resonances. The description of these
weak antiresonances is not possible within the approximation in equations (36) and (37), but
requires an improved solution of the kinetic equations by taking into account the Stark ladder.
An analytical approach of this kind is proposed in appendix C.

The character of the antiresonances also depends on the value of the Rashba coupling
constant α as shown in figure 4. The antiresonance exhibits a sharp δ-like line shape, when
α approaches zero (an example is shown by the dash–dotted line). Consequently, the spin–
orbit coupling plays a decisive role for the resolution of the predicted antiresonance in a real
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experiment. With increasing α, the line shape of the antiresonance becomes asymmetric, with
a shifted and broadened minimum (thick solid line). By increasing the lattice temperature
(thin solid line), the field-induced spin depolarization at the tunnelling resonance appreciably
decreases.

5. Summary

We provided a theoretical model to answer the question of whether the spin polarization of
nonequilibrium carriers in a semiconductor can be controlled by a quantizing electric field.
Weakly coupled superlattices were treated, in which the spin polarization is due to the Zeeman
splitting. The application of a strong electric field along the superlattice axis leads to resonant
tunnelling between different spin states. Due to this mixing of eigenstates at the electric-
field-induced tunnelling resonance, a strong spin depolarization occurs, the strength of which
depends on the miniband width, the Rashba spin–orbit coupling, and the lattice temperature.
This collapse of the spin polarization appears in a narrow region of electric field strengths and
is sufficiently strong that it might be of interest for spintronic applications.

The physical mechanism leading to spin depolarization due to field-induced tunnelling
resonances is expected to exist also in layered three-dimensional superlattices with Dresselhaus
spin–orbit coupling, for which the experimental detection of the predicted antiresonance in the
spin polarization is much easier than in the considered two-dimensional electron gas with a
superlattice structure. Furthermore, in our model, the spin polarization is due to the Zeeman
splitting induced by a strong magnetic field. For device applications, it seems to be more
appropriate to achieve a pronounced spin polarization by incorporating into the superlattice
structure alternating ferromagnetic layers with a large internal magnetic field.
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Appendix A. Solution of equations (10) and (11)

To solve the set of linear differential equations (10) and (11), we apply a calculational scheme
that was outlined in [11]. Introducing dimensionless parameters

λ(ky) = αky

h̄�
, δ = αm∗�

2h̄2eE , x = kx d, (A.1)

the equations are expressed by

i
∂�1(x, ky)

∂x
= (ξ̃ (x, ky) + ε)�1(x, ky) − λ(ky)�2(x, ky) + iδ sin(x)�2(x, ky), (A.2)

i
∂�2(x, ky)

∂x
= (ξ̃ (x, ky) − ε)�2(x, ky) − λ(ky)�1(x, ky) − iδ sin(x)�1(x, ky). (A.3)

A solution is searched for in the form

�1(x, ky) = 1√
2

exp

(
−i

∫ x

0
dx ′ ξ̃ (x ′, ky)

)

× [F1( f1(x, ky) − i f2(x, ky)) − iF2( f1(x, ky)
∗ − i f2(x, ky)

∗)], (A.4)
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�2(x, ky) = 1√
2

exp

(
−i

∫ x

0
dx ′ ξ̃ (x ′, ky)

)

× [F1( f2(x, ky) − i f1(x, ky)) + iF2( f2(x, ky)
∗ − i f1(x, ky)

∗)], (A.5)

with |F1|2 + |F2|2 = 1 so that

| f1(x, ky)|2 + | f2(x, ky)|2 = 1. (A.6)

Inserting the ansatz for �1,2 into equations (A.2) and (A.3), we obtain

i
∂ f1(x, ky)

∂x
= δ sin(x) f1(x, ky) − (λ(ky) + iε) f2(x, ky), (A.7)

i
∂ f2(x, ky)

∂x
= −δ sin(x) f2(x, ky) − (λ(ky) − iε) f1(x, ky), (A.8)

which has the form of coupled Schrödinger equations for the wavefunctions f1,2(x, ky), for
which we apply the ‘initial’ conditions f1(0, ky) = 1 and f2(0, ky) = 0. Due to the lattice
periodicity, we have �1,2(0, ky) = �1,2(2π, ky), which leads to the dispersion relation

cos

[∫ 2π

0
dx ′ ξ̃ (x ′, ky)

]
= Re f1(2π, ky), (A.9)

and an equation from which F1,2 can be calculated up to a undetermined phase factor.
Let us derive a simple analytical solution of equations (A.2) and (A.3) that is valid for

ε < 1/2 and δ 
 1. In this case, we neglect the x dependence in ξ̃ (x, ky) and perform a
discrete Fourier transformation

�µ(x, ky) =
∞∑

n=−∞
e−inx�µ,n(ky). (A.10)

The set of linear equations for the Fourier components

(ξ̃ (ky) + ε − n)�1,n(ky) − λ(ky)�2,n(ky) = − δ

2
(�2,n+1(ky) − �2,n−1(ky)), (A.11)

(ξ̃ (ky) − ε − n)�2,n(ky) − λ(ky)�1,n(ky) = δ

2
(�1,n+1(ky) − �1,n−1(ky)), (A.12)

is solved by focusing on the main tunnelling transitions described by �1,0, �1,1, �2,0, and �2,1.
Equating the determinant of the respective 4×4 coefficient matrix to zero, we find the solution

ξ̃1,2(ky) = 1
2

(
1 ±

√
(2κ(ky) − 1)2 + δ2

)
, (A.13)

which is applicable for ε < 1/2 and δ 
 1.

Appendix B. Scattering rates

The scattering rates in the kinetic equation (33) couple different spin and charge components
of the density matrix to each other. The rates consist of scattering-in and scattering-out
contributions given by

W m2µ2,m′µ′
m1µ1,mµ (k ′

y, ky |s)
= 1

h̄2

∑

qx

ei(m1−m2)qx d�µ1µ(k ′
y, ky |qx, m1 − m)�∗

µ2µ
′(k ′

y, ky |qx, m2 − m ′)

×
{∫ ∞

0
dt exp

[
−st +

it

h̄
(εm1µ1(k

′
y) − εm′µ′(ky))

]
[(N0 + 1)e−iω0t + N0eiω0t ]
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+
∫ ∞

0
dt exp

[
−st +

it

h̄
(εmµ(ky) − εm2µ2(k

′
y))

]
[(N0 + 1)eiω0t + N0e−iω0t ]

}

− 1

h̄2 δm2,m′δµ2,µ′δk′
y ,ky

×
∑

m,µ

∑

ky

∑

qx

�µµ(k y, ky |qx, m − m)�∗
µµ1

(k y, ky|qx, m − m1)

×
∫ ∞

0
dt exp

[
−st +

it

h̄
(εmµ(k y) − εm′µ′(ky))

]
[(N0 + 1)eiω0t + N0e−iω0t ]

− 1

h̄2 δm1,mδµ1,µδk′
y ,ky

×
∑

m,µ

∑

ky

∑

qx

�µµ2(k y, ky|qx, m − m2)�
∗
µµ′(ky, ky |qx, m − m ′)

×
∫ ∞

0
dt exp

[
−st +

it

h̄
(εmµ(ky) − εmµ(k y))

]
[(N0 + 1)e−iω0t + N0eiω0 t ],

(B.1)

with the matrix elements

�µ′µ(k ′
y, ky|qx, m) =

∑

kx

eimkx d+iχµ′ (kx +qx ,k′
y )−iχµ(kx ,ky )�µ′µ(kx + qx, k ′

y |kx, ky). (B.2)

Appendix C. Analytical solution of the kinetic equations

Let us treat the kinetic equations for a superlattice with a narrow miniband width (�/h̄� 
 1).
With the notation

�µµ′(k ′
y, ky|m) =

∑

qx

|�µµ′(k ′
y, ky |qx, m)|2, (C.1)

we obtain from the equations (34) and (B.1) the equation
∑

k′
y

∑

m

{
�11(k

′
y, ky|m)

× {
F1

1 (0, k ′
y)[(N0 + 1)δ(εk′

y
− εky − mh̄� − h̄ω0)

+ N0δ(εk′
y
− εky − mh̄� + h̄ω0)]

− F1
1 (0, ky)[(N0 + 1)δ(εk′

y
− εky − mh̄� + h̄ω0)

+ N0δ(εk′
y
− εky − mh̄� − h̄ω0)]

}

+ �21(k
′
y, ky |m)

{
F2

2 (0, k ′
y)[(N0 + 1)δ(εk′

y
− εky − mh̄� − 2ξ(k ′

y) − h̄ω0)

+ N0δ(εk′
y
− εky − mh̄� − 2ξ(k ′

y) + h̄ω0)]

− F1
1 (0, ky)[(N0 + 1)δ(εk′

y
− εky − mh̄� − 2ξ(k ′

y) + h̄ω0)

+ N0δ(εk′
y
− εky − mh̄� − 2ξ(k ′

y) − h̄ω0)]
}} = 0, (C.2)

with εky = ε(ky) + ξ(ky), which can be analytically solved for weakly coupled superlattices
(�/h̄� 
 1). For � = 0, we obtain from equations (10) and (11): if ξ̃ (ky) = −κ(ky)+n0(ky)

then
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�1(k) =
√

κ(ky) + ε

2κ(ky)
e−in0(ky )kx d , �2(k) =

√
κ(ky) − ε

2κ(ky)
e−in0(ky )kx d , (C.3)

so that |�1(k)|2 − |�2(k)|2 = ε/κ(ky).
If ξ̃ (ky) = κ(ky) − n0(ky) then

�1(k) =
√

κ(ky) − ε

2κ(ky)
ein0(ky)kx d , �2(k) =

√
κ(ky) + ε

2κ(ky)
ein0(ky)kx d , (C.4)

so that |�1(k)|2 − |�2(k)|2 = −ε/κ(ky). Using this result, the matrix elements �µµ′ can be
calculated. For a constant coupling strength (gσ (q) = g), we obtain

�11(k
′
y, ky) = |g|2γ11(k

′
y, ky)Fm+n0(ky )−n0(k′

y )

(
�

h̄�

)
, (C.5)

γ11 = 1

2
± ε2

2κ(ky)κ(k ′
y)

{
if n0(ky) = n0(k

′
y)

if n0(ky) �= n0(k
′
y)

(C.6)

�21(k
′
y, ky) = |g|2γ21(k

′
y, ky)Fm+n0(ky )+n0(k′

y )

(
�

h̄�

)
, (C.7)

γ21 = 1

2
∓ ε2

2κ(ky)κ(k ′
y)

{
if n0(ky) = n0(k

′
y)

if n0(ky) �= n0(k
′
y)

, (C.8)

with the abbreviation

Fm(x) =
∫ π

0

dt

π
J 2

m(x sin(t)). (C.9)

Jm denotes the Bessel function. In the limit � 
 h̄�, we have �11 ∼ δm+n0(ky )−n0(k′
y ),0 and

�21 ∼ δm+n0(ky )+n0(k′
y ),0, which is used to derive the solution of equation (C.2)

F1
1 (0, ky) = A exp

(
− ε̃1(ky)

kBT

)
, F2

2 (0, ky) = A exp

(
− ε̃2(ky)

kBT

)
, (C.10)

with

ε̃1,2(ky) = ε(ky) ± (ξ(ky) − n0(ky)h̄�). (C.11)

With this analytical result for the components of the density matrix, the electric-field
dependence of the magnetization is calculated in section 4.

The thermal lateral distribution functions in equation (C.10) can be used to study
spin depolarization at the main tunnelling resonance (� = ωc). However, to treat weak
antiresonances of higher order (n� = mωc), the WS ladder has to be retained in equation (C.2).
For small spin–orbit coupling, we can apply a perturbation approach with respect to α. From
equations (C.5) to (C.8), we obtain �11 ∼ α0, �21 ∼ α2 (and similarly �22 ∼ α0, �12 ∼ α2),
which justifies the ansatz

F1
1 (0, ky) = A1 exp

(
− ε̃1(ky)

kBT

)
, F2

2 (0, ky) = A2 exp

(
− ε̃2(ky)

kBT

)
, (C.12)

for weakly coupled superlattices. Inserting this result into the kinetic equation (C.2), we get
∑

m

∑

ky ,k′
y

Fm

(
�

h̄�

){
A1γ11(k

′
y, ky)e

− ε̃1(ky )

kB T (e− mh̄�
kB T − 1)

× [
δ(ε̃1(k

′
y) − ε̃1(ky) − mh̄� + h̄ω0)

+ e− h̄ω0
kB T δ(ε̃1(k

′
y) − ε̃1(ky) + mh̄� − h̄ω0)

]



Field effect on spin polarization 3877

+ γ21(k
′
y, ky)e

− ε̃1(ky )

kB T (A2e− mh̄�
kB T − A1)

× [δ(ε̃2(k
′
y) − ε̃1(ky) − mh̄� + h̄ω0)

+ e− h̄ω0
kB T δ(ε̃1(k

′
y) − ε̃1(ky) + mh̄� − h̄ω0)]

} = 0, (C.13)

which can be used together with the normalization condition
∑

ky

[
A1 exp

(
− ε̃1(ky)

kBT

)
+ A2 exp

(
− ε̃2(ky)

kBT

)]
= 1, (C.14)

to calculate the quantities A1 and A2, in which the complete Stark ladder enters. This
approximation can be used to treat the spin depolarization at higher-order cyclotron-Stark
resonances.
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